《平行与垂直》教案
作为一名默默奉献的教育工作者,常常要写一份优秀的教案,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编帮大家整理的《平行与垂直》教案,仅供参考,大家一起来看看吧。
《平行与垂直》教案1课型:新授课
教学目标:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直.
教学重点:两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.
教学难点:启发学生,把研究两条直线的平行或垂直问题,转化为研究两条直线的斜率的关系问题.
注意:对于两条直线中有一条直线斜率不存在的情况,在课堂上老师应提醒学生注意解决好这个问题.
教学过程:
(一)先研究特殊情况下的两条直线平行与垂直
上一节课,我们已经学习了直线的倾斜角和斜率的概念,而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度,并推导出了斜率的坐标计算公式.现在,我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.
讨论:两条直线中有一条直线没有斜率,(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.
(二)两条直线的斜率都存在时,两直线的平行与垂直
设直线L1和L2的斜率分别为k1和k2.我们知道,两条直线的平行或垂直是由两条直线的方向决定的,而两条直线的方向又是由直线的倾斜角或斜率决定的所以我们下面要研究的问题是:两条互相平行或垂直的直线,它们的斜率有什么关系?
首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机,让学生通过度量,感知α1,α2的关系)
∴tgα1=tgα2.
即k1=k2.
反过来,如果两条直线的斜率相等:即k1=k2,那么tgα1=tgα2.
由于0°≤α1<180°,0°≤α<180°,
∴α1=α2.
又∵两条直线不重合,
∴L1∥L2.
结论:两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2;反之则不一定.
下面我们研究两条直线垂直的情形.
如果L1⊥L2,这时α1≠α2,否则两直线平行.
设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有
α1=90°+α2.
因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.
,
可以推出:α1=90°+α2. L1⊥L2.
结论:两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即
注意:结论成立的条件.即如果k1·k2=-1,那么一定有L1⊥L2;反之则不一定.
例题分析:
例1已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),试判断直线BA与PQ的位置关系,并证明你的结论.
解:直线BA的斜率k1=(3-0)/(2-(-4))=0.5,
直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5,
因为k1=k2=0.5,所以直线BA∥PQ.
例2.已知四边形ABCD的四个顶点分别为A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明.
例3.已知A(-6,0),B(3,6),P(0,3),Q(-2,6),试判断直线AB与PQ的位置关系.
解:直线AB的斜率k1=(6-0)/(3-(-6))=2/3,
直线PQ的斜率k2=(6-3)(-2-0)=-3/2,
因为k1·k2=-1所以AB⊥PQ.
例4.已知A(5,-1),B(1,1),C(2,3),试判断三角形ABC的形状.
分析:借助计算机作图,通过观察猜想:三角形ABC是直角三角形,其中AB⊥BC,再通过计算加以验证.(图略)
课堂练习
P89练习1.2.
归纳小结:
(1)两条直线平行或垂直的真实等价条件;
(2)应用条件,判定两条直线平行或垂直.
(3)应用直线平行的条件,判定三点共线.
作业布置:P89-90习题3.1:A组5.8;
课后记:
《平行与垂直》教案2【教学内容】人教版四年级上册第五单元56页-57页。
【教学目标】
1、认识垂线和平行线
2、使学生掌握“相互平行”与“相互垂直”的含义。
3、培养和发展学生的空间想象能力。
【教学重点】掌握垂直和平行的概念
【教学难点】理解平行线定义中“在同一个平面内的”的含义。
【教学过程】
一、情境导入,整理明标
1、复习导入:
师:我们在第三单元学习了线段、直线和射线,现在请你在你的本子上画出一条直线,再回忆一下直线有哪些特征?
预设:(1)直的(2)向两边无线延伸(3)无法测量(2)没有端点
师:在你刚才所画的直线旁边随意再画一条直线,会发生什么情况?
预设:
预设:通过回忆直线的特征,构建两条直线的位置关系,引入本节课的知识点——平行与垂直。
2、整理明标
(1)认识平行
(2)认识垂直
二、明确路径,合作探究
问题一:采用小组合作探究两条直线的位置关系,进而发现什么是平行。
问题二:通过学生观察,教师讲授,得出两条直线相互垂直的概念。
三、展示反馈,对抗质疑
问题一:认识平行
(1)提出问题:观察一下每组中的两条直线,它们的位置有什么不同?你能按位置将他们分分类吗?先独立思考然后小组讨论一下你是怎么分的?
(2)操作:按照相交和不相交的标准将它们分类。
(3)汇报:
(1) ①②,③④
(2)①,②③④< ……此处隐藏20258个字……拿出一张圆形纸)能动手折一折,折出垂线与平行线吗?
学生动手折垂线,教师巡视,进行个别指导。
出示长方体框架, 在这个长方体框架中找出你所知道的互相垂直的线段和互相平行的线段。
同学之间互相讨论交流,然后全班汇报。
五、课堂小结。
今天这节课你有什么收获?你觉得你这节课表现怎样?
教学反思: 垂直与平行是在学生学习了直线和角的基础上进行教学的。这两个概念学生相对比较陌生,这节课数学知识概念较多,学生理解起来有一定的难度,因此针对本课知识的特点和学生的实际,我从学生的实际出发,关注学生的生活经验和知识基础,从复习有关“直线”知识入手,唤起学生的回忆,为新知的探究学习做了较好的街接准备。
在教学中,我紧紧抓住“以分类为主线”展开探究活动,提出“在无限大的平面上同学们想象的两条直线的样子画下来?”“能不能把这几种情况进行分分类?”这样有思考价值的问题,学生通过想一想、画一画、分一分、说一说等多种活动进行观察、思考,逐步认识到:在同一平面内两条直线的位置关系只有相交和不相交两种情况,相交中有成直角和不成直角两种情况。这样教学不仅符合学生的认知规律,而且通过分类,分层理解,既符合学生的认知规律,又有利于提高学生生活实际,让学生从自己的身边发现数学知识,进一步培养学生观察的能力,发现垂直与平行现象。
反思本课教学,存在以下几点不足:1、没有从整体上把握垂直与平行概念的教学,概念教学内容分割太细,条条框框太多,影响学生对概念的整体感知。2、强化了教师的主导作用,削弱了学生的主体作用,对学生没放手,学生自主探索的广度和深度不足。如在教学平行时,可以放手让学生自己探索检验两条直线永不相交的方法。3、是学生画“两直线”及“分类”的活动时间过长,而且前面平行线部分讲得用时过多,以至练习的任务没能在课堂内如实完成。
《平行与垂直》教案14教学目标
1、让学生结合生活情境,通过自主探究活动,初步认识平行线、垂线。
2、通过讨论交流,使学生独立思考能力与合作精神得到和谐发展。
3、在比较分析、综合的观察与思维中渗透分类的思想方法。
通过观察、操作学习活动,让学生经历认识垂直与平行线的过程,掌握其特征。培养学生学以致用的习惯,体会数学的应用与美感,激发学生学习数学的兴趣、增强自信心。
重点:通过学生的自主探究活动,初步认识平行线与垂线。
难点:理解永不相交的含义
教具学具准备:
彩笔、小棒、方便贴、三角板、直尺、手工纸、课件
教学过程:
一、问题导入新课
提出问题:让学生拿出准备好的白纸,把它看成一个平面,想象平面内有两条直线,想象两条直线什么样子?
二、探索比较,掌握特征
(一)动手操作,反馈展示。
每个同学先独立思考,把可能出现的图形用彩笔画在纸上,画完后,大家把可能出现的图形展示黑板上。
(二)小组讨论交流,探索图形特征。
1、尝试把画出的图形进行分类。
把作品编号。
小组合作交流,哪几号作品分成一类。
老师巡察指导。
小组代表上黑板进行分类。
说明理由。
不同分类方法,说明理由。
怎样判断相交还是不相交?
3、引入平行概念
同一平面内,永远不相交的两条直线叫什么?
学生总结归纳平行的概念。
分析概念,怎样理解互相平行?
垂直概念
相交的两条直线形成了什么?
出现了哪些角?
哪些作品形成了直角?怎样知道它是直角?
在同一平面内相交形成直角的两条直线在数学上叫什么?
学生归纳总结。
相交点叫什么?
同一平面内,研究两条直线的特殊位置关系垂直与平行(板书)
(三)摆一摆
1、拿出一根红色的和一根绿色的小棒,摆一摆使它们互相平行,再摆一根红色的小棒使它和绿色小棒平行,看看两跟红色小棒发现了什么?
2、摆一跟绿色的和一根红色的使它们互相垂直,再摆一根红色的小棒使它和绿色小棒垂直,看看两根红色小棒你发现了什么?
三、巩固练习
1、生活中垂直与平行的现象?
2、操场上垂直与平行的现象?
3、几何中垂直与平行的现象?
四、全课总结,完善认知
同学们,你觉得这节课里你表现怎样?你有什么收获和体会?
五、课后作业:P651、2
《平行与垂直》教案15一、三维目标
1、知识与技能目标:掌握平行线与垂直线的概念,能准确作出判断,会动手画出平行线与垂直线。
2、过程与方法目标:通过独立思考、小组交流合作、动手操作,提高学生的总结归纳、小组协作、解决实际问题的能力。
3、情感态度与价值观目标:感受数学的魅力,激发学生学习数学的兴趣,在解决实际问题体会到成功的喜悦。
二、教学重难点
教学重点:理解平行与垂直等概念,会进行判断;
教学难点:理解平行与垂直的本质特征
三、教学过程
1、创设情境,导入新知
教师带领学生回忆直线的相关内容,提问学生:我们生活中常见的直线都有哪些?
学生仔细思考,回答教师问题,同时教师在多媒体上展示多张生活中常见的直线,如栏杆,电线,筷子等等,
提问学生:它们在位置上有什么关系呢?
学生对于平行的能回答它们朝着相同的方向,相交的能回答朝着不同的方向。从而引入本节课学习的内容:平行与垂直。
2、师生合作,探究新知
首先,教师让学生用直尺在纸上任意画出两条直线,提问学生:仔细观察任意两条直线在位置上有什么关系呢?一共都有哪些情况?
接下来教师讲授,我们发现两条直线有相交和不相交的情况,我们知道直线是可以无限延长的,那么没有相交的直线再画长一些它们会相交吗?如果不相交它们还会相交吗?我们生活中有这种不相交的例子吗?请学生回答并板书总结。
之后教师讲解在同一个平面不相交的两条直线叫做平行线,也可以说这两条直线互相平行,如直线a与直线b平行,记作a//b,读作a平行于b。
结合平行直线的概念,提问学生:直线相交有什么哪些情况呢?引导学生用三角尺对直线夹角进行测量,我们生活中有这样的例子吗?
学生用三角板对4个夹角进行测量,发现有60°和120°,有4个角相等,即4个角都是90度。教师讲授特殊情况,两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另外一条直线的垂线,两条垂线的交点叫做垂足。如a与b互相垂直,记作a⊥b,读作a垂直于b。
3、实践练习,巩固新知
4、引导反思,全课小结
5、布置作业,课后延伸
文档为doc格式